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PLANE OVSYANNIKOV VORTEX:

MOTION PROPERTIES AND EXACT SOLUTIONS

UDC 533S. V. Golovin

The physical properties of ideal plasma flow described by the Ovsyannikov plane vortex are studied.
The particle trajectories and magnetic lines are shown to be plane curves, and an algorithm for
describing the motion in three-dimensional space is proposed. Some exact solutions of the submodel
are obtained and studied.

Key words: ideal magnetohydrodynamics, exact solutions, trajectories, magnetic lines, uniform
deformation.

A partially invariant submodel of the equations of ideal magnetic hydrodynamics that defines three-
dimensional motion of a continuous medium with plane waves similar to the Ovsyannikov spherical vortex [2, 3]
was constructed in [1]. The equations of the submodel were derived and analyzed, and a geometrical algorithm
for searching the noninvariant function included in the solution was proposed. The present work is a continuation
of [1].

1. Equations of the Submodel. We study the model of ideal magnetohydrodynamics [4]

Dρ + ρ div u = 0, Du + ρ−1∇p + ρ−1H × rotH = 0,

Dp + A(p, ρ) div u = 0, DH + H div u − (H · ∇)u = 0, (1.1)

div H = 0, D = ∂t + u · ∇,

where u = (u, v, w) is the velocity vector, H = (H, K, L) is the magnetic field intensity vector, and p and ρ are the
pressure and density, respectively. The equation of state p = F (S, ρ) with entropy S holds. The function A(p, ρ) is
given by the equation of state A = ρ (∂F/∂ρ). All functions depend on time t and Cartesian coordinates x = (x, y, z).

The partially invariant solution of [5] system (1.1) is written as [1]

u = U(t, x), H = H(t, x),

v = V (t, x) cos ω(t, x, y, z), K = N(t, x) cos ω(t, x, y, z),

w = V (t, x) sin ω(t, x, y, z), L = N(t, x) sin ω(t, x, y, z),

p = p(t, x), ρ = ρ(t, x), S = S(t, x).

(1.2)

The functions depending only on t and x will further be called invariant; the unique noninvariant function
is the function ω. In [1], an auxiliary invariant function h was introduced using the equality

D̃ρ + ρ(Ux + hV ) = 0, D̃ = ∂t + U∂x.

Two cases are distinguished: h = 0 and h �= 0. In the case h �= 0, for convenience, we introduce the function
τ = 1/h; then, the subsystem for the invariant functions becomes

D̃ρ + ρ(Ux + τ−1V ) = 0, D̃U + ρ−1px + ρ−1NNx = 0,
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D̃V − ρ−1H0τ
−1Nx = 0, D̃p + A(p, ρ)(Ux + τ−1V ) = 0, (1.3)

D̃N + NUx − H0τ
−1Vx + τ−1NV = 0, D̃τ = V, H0τx = τN.

The noninvariant function ω is determined from the implicit finite relation

F (y − τ cosω, z − τ sinω) = 0 (1.4)

with an arbitrary smooth function F .
In the case h = 0, the subsystem for the invariant functions becomes

D̃ρ + ρUx = 0, D̃U + ρ−1px + ρ−1NNx = 0,

D̃V − ρ−1H0Nx = 0, D̃p + A(p, ρ)Ux = 0, (1.5)

D̃N + NUx − H0Vx = 0, D̃ϕ = V, H0ϕx = N.

The implicit relation for the function ω is written as

y cosω + z sin ω = f(ω) + ϕ(t, x), (1.6)

where f is an arbitrary smooth function. In [1], geometrical algorithms for solving the implicit equations (1.4) and
(1.6) were proposed, the domains of the solution were found, and possible cases of singularities were considered.
Below, the general picture of motion in three-dimensional space is studied.

2. Particle Trajectories and Magnetic Lines. Differentiation of Eqs. (1.4) and (1.6) yields the equality

Dω = 0,

where D is the operator of total differentiation along the trajectory. The angle ω is conserved along the trajectory,
and, hence, this trajectory lies entirely in a certain plane which is parallel to the Ox axis and is turned by angle ω

about it. Differentiation along the magnetic lines shows that ω is also conserved along these curves. Thus, for each
particle, its trajectory and magnetic line are plane curves belonging to the same plane determined by the angle ω.

Another important property of the solution follows from representation (1.2). To determine the trajectory
of a certain particle, we pose the Cauchy problem. The plane motion of a particle is completely determined by the
velocity components U and V dependent only on the invariant variables t and x; therefore, for an arbitrary two
particles belonging to a certain plane x = x0 at the initial time t = t0, the Cauchy problems for the trajectories
coincide. Although different particles move in different planes, their trajectories, as plane curves, are identical. The
same is true for the magnetic lines through two different points of the same plane x = x0. Thus, it is possible to
construct the trajectory and magnetic-line patterns for the particles lying in the plane x = x0. Attaching these
patterns to each point of the plane x = x0 in the domain of definition of the function ω according to the direction
field determined by the function ω, we obtain a three-dimensional pattern of the trajectories and magnetic lines
over the entire space (Fig. 1).

To construct the pattern, we consider the plane of motion of a certain particle located at a point M =
(x0, y0, z0) at the initial time t = t0. The plane considered is parallel to the Ox axis and is turned about it by an
angle ω relative to the Oy axis. In this plane, the Cartesian coordinate system is defined as follows. The coordinate
origin O′ is placed at the point of the orthogonal projection of M onto the plane Oyz. One of the coordinate axes is
parallel to the Ox axis and is also denoted by x. The O′l axis is orthogonal to the O′x axis, so that the coordinate
system O′xl had the right orientation (see Fig. 1). In this coordinate system, the particle trajectory is determined
by solving the following Cauchy problem:

dx

dt
= U(t, x), x(t0) = x0. (2.1)

Solution of problem (2.1) gives the dependence x = x(t, x0), which is integrated to yield the dependence l = l(t):

l(t) =

t∫

t0

V (t, x(t, x0)) dt. (2.2)
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Fig. 1. Spatial picture of motion.

Finally, in the initial coordinate system Oxyz, the equations of the particle trajectory are retrieved in the form

x = x(t, x0), y = y0 + l(t) cosω0, z = z0 + l(t) sin ω0, (2.3)

where ω0 = ω(t0, x0) is the value of the angle ω calculated according to the implicit relation (1.4) at the point M

at the initial time.
The magnetic line at the time t = t0 is defined as the integral curve of the magnetic field. The expressions

defining the magnetic line through the point M = (x0, y0, z0) at the time t = t0 are written as

y = y0 + cosω0

x∫

x0

N(t0, s)
H(t0, s)

ds, z = z0 + sin ω0

x∫

x0

N(t0, s)
H(t0, s)

ds. (2.4)

Equations (2.4) are derived similarly to relations (2.3). Thus, the following theorem holds.
Theorem 1. The plasma motion given by solution (1.2) (see Fig. 1) has the following properties:
1. The trajectories and magnetic lines are plane curves and lie in the planes which are parallel to the Ox

axis and are turned by angle ω about it relative to the positive Oy direction.
2. All particles that belong to a plane x = x0 at a time t = t0 circumscribe identical trajectories in the planes

of their motion. The magnetic lines through points of the plane x = x0 are also plane curves which belong to the
same planes as the trajectories of the corresponding particles of the plane x = x0.

We note an interesting property of the solutions described by the given submodel. By varying the direction
fields in the plane x = x0, it is possible to construct an infinite set of pictures of motion using the same pattern
of trajectories and magnetic lines. The geometrical algorithms for constructing the direction field obtained in [1]
allow the picture of motion to be modified according to required characteristics of the motion described. The same
property holds for the spherical Ovsyannikov vortex [3].

3. Domain of the Solution in Three-Dimensional Space. The above constructions lead to an algorithm
for searching the total domain of definition of the solution in three-dimensional space. In a fixed plane x = x0, the
function ω has a domain of definition (finite in many cases) which is bounded by τ -equidistants to γ in the case
h �= 0 and by the curve described in [1] in the case h = 0. In both cases, the direction field given by the function ω

in the plane x = x0 is orthogonal to the boundary of the domain of the function ω. To find the boundaries of the
domain of the solution in three-dimensional space, it is necessary to attach the magnetic line pattern to each point
of the boundary of the domain of the function ω in the plane x = x0. As a result, we obtain a channel whose walls
are “woven” from magnetic lines. Because of the freezing-in property of the magnetic lines, the channel walls can
be treated as impermeable infinitely conducting pistons. In the case of stationary solutions, the walls are fixed; in
the nonstationary case, the walls are extended or shrunk according to the behavior of the function τ (h �= 0) and
the function ϕ (h = 0). In the case of a finite domain of the function ω (this domain can always be bounded to
a finite one), each section of the total domain of the solution by a plane orthogonal to the Ox axis is finite, and,
hence, the kinetic and magnetic energies are also finite in this domain.
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Fig. 2. Direction field given by the function ω according to Eq. (1.4): R > τ (a), R = τ (b), and R < τ (c).

4. Example of Stationary Solution. As an example we consider the simplest stationary solution of
system (1.3) given by the formulas

U = H2
0 sinh x, V = H2

0 tanh x, τ = cosh x,

H = H0 sinh x, N = H0 tanh x, ρ = H−2
0 , S = S0.

(4.1)

In this solution (as well as in all stationary solutions of the type described), the velocity and magnetic field intensity
vector are collinear at each particle. Solution (4.1) is a special case of Chandrasekhar’s solution [6]. The streamlines
and magnetic lines coincide, and for x0 = 0 and

l(x) = cosh x − 1, (4.2)

they are given by Eqs. (2.3). The streamlines are parts of a catenary. We note that solution (4.1) can be continuously
conjugate with the uniform flow along the Ox axis. Indeed, in the section x = 0, all functions in (4.1) and their
derivatives take values corresponding to the uniform flow. We construct a solution which switches the uniform flow
to the plane Ovsyannikov vortex (4.1) at the section x = 0.

The pattern of the streamlines and magnetic lines is a straight line which is parallel to the Ox axis at x < 0
and smoothly becomes curve (4.2) at x � 0. In Eq. (1.4), we choose the function F (y, z) = y2 + z2 − R2. In this
case, the curve γ: F (y, z) = 0 is a circle. Figure 2 shows the direction fields obtained for various relation between
τ and R according to the algorithm of [1]. For R > τ , the direction field is given in the circular zone of definition
between two circles of radii R ± τ in the plane Oyz. On the inner circle |x| = R − τ , the field is directed toward
the point O. In the case R = τ , the inner circle shrinks to the point O. In this case, the direction field at this
point is not unique. Finally, for R < τ , the inner circle is inverted and becomes a circle of radius τ − R with the
direction field oriented into the zone of definition. These direction fields generate various pictures of motion in
three-dimensional space.

The streamline pattern described above is attached to each point of the plane Oyz in the domain according
to the direction field shown in Fig. 2. By virtue of the obvious central symmetry of the direction field, the obtained
picture of motion is axisymmetric. Figure 3 shows the axial section of the region of three-dimensional space occupied
by the motion. Depending on the relation between τ(0) and R, three different pictures of motion are possible. Each
particle moves along a plane curve, but the orientation of the curves in the space depends on the chosen particle.
At the section x = 0, the uniform flow in a cylindrical channel with central body at x < 0 becomes the curvilinear
channel flow at x > 0 described by solution (4.1). The cases presented in Fig. 3a–c correspond to the direction
fields shown in Fig. 2a–c. Three-dimensional visualization of motion at R > τ(0) is presented in Fig. 4, which shows
fragments of the channel walls and the particle streamlines. It is evident that each streamline has the same plane
curve shape. The orientation of the streamlines is determined by the direction field in Fig. 2a, and the axial section
of the channel is presented in Fig. 3a.
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Fig. 3. Axial sections of the channels occupied by the gas flow: (a) R > τ (0); (b) R = τ (0); (c) R < τ (0).

Fig. 4. Spatial flow visualization.
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5. Solutions with Uniform Deformation. We consider the solutions of the invariant subsystems (1.3)
and (1.5) in which the velocity component U depends linearly on the spatial coordinate x. For the equations of
magnetohydrodynamics (1.1) assuming a linear dependence of all velocity components on all spatial coordinates,
such motions were studied in [7].

For convenience, instead of (t, x) we use the Lagrangian coordinates (t, ξ) where ξ satisfies the equations

ξt + Uξx = 0, ξ(0, x) = x. (5.1)

We introduce the function M = ∂x/∂ξ. In transformation to the Lagrangian coordinates, the derivatives of the
arbitrary function f(t, x) are converted as follows:

ft + Ufx → ft, fx → M−1fξ.

In addition, by the definition of the Lagrangian coordinates, we have

U = xt, Ux = M−1Mt.

We first study system (1.5).
Making the change of variables in system (1.5), we obtain

ρt + M−1ρMt = 0, xtt + ρ−1M−1(pξ + NNξ) = 0,

Vt − ρ−1M−1H0Nξ = 0, pt + M−1A(p, ρ)Mt = 0, (5.2)

Nt + M−1NMt − H0M
−1Vξ = 0, ϕt = V, H0ϕξ = MN.

System (5.2) has two obvious integrals

ρM = f(ξ), S = S(ξ) (5.3)

(S is the entropy). In view of (5.3), from system (5.2) we obtain

(MN)t = H0Vξ, f(ξ)Vt = H0Nξ, xtt + f(ξ)−1(pξ + NNξ) = 0. (5.4)

From the last two equations of system (5.2), V and N can be expressed as functions of ϕ:

V = ϕt, N = H0M
−1ϕξ. (5.5)

Substitution of expressions (5.5) into the first equation (5.4) yields the identity, i.e., the first equation (5.4) is the
condition of compatibility of Eqs. (5.5) with respect to the function ϕ. The second relation (5.4) leads to the linear
equation for ϕ:

f(ξ)ϕtt = H2
0 (M−1ϕξ)ξ. (5.6)

Let us make the following assumptions: 1) the gas is polytropic; i.e., p = S(ξ)ργ ; 2) the dependence x(ξ) is
linear, i.e.,

x = M(t)ξ, M(0) = 1, U = Ṁ(t)ξ. (5.7)

Here and below, dot above a symbol denotes the derivative with respect to time t and prime denotes the derivative
with respect to ξ. For continuous motion of a continuous medium, the function M cannot vanish. For definiteness,
we assume that M > 0. Under the above assumptions, the equations of the system reduce to the following key
relation:

M̈ξ + f(ξ)−1
((S(ξ)f(ξ)γ)′

M(t)γ
+ H2

0

ϕξϕξξ

M(t)2
)

= 0. (5.8)

To separate the variables in Eq. (5.8), we assume that the function ϕ has the form

ϕ(t, ξ) = α(t)β(ξ).

From Eq. (5.6), we obtain

f(ξ)M(t)α̈(t)β(ξ) = H2
0α(t)β′′(ξ). (5.9)
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Separating the variables in Eq. (5.9), we have

M(t)α̈(t)
α(t)

=
H2

0β′′(ξ)
f(ξ)β(ξ)

= C1, (5.10)

where C1 is an arbitrary constant. Next, from Eq. (5.8), we have

M̈ξ + f(ξ)−1
((

S(ξ)f(ξ)γ
)′

M(t)γ
+ H2

0

α(t)2β′(ξ)β′′(ξ)
M(t)2

)
= 0. (5.11)

Equation (5.11) is written as the scalar product a · b = 0, where

a = (M̈, M−γ , H2
0α2M−2), b = (ξ, (Sfγ)′f−1, β′β′′f−1).

In this equation, the variables are separated according to the Ovsyannikov lemma [8]. Here the unique nontrivial
case (M �= const) is the following one:

(S(ξ)f(ξ)γ)′

f(ξ)
= C2ξ,

β′(ξ)β′′(ξ)
f(ξ)

= C3ξ; (5.12)

M̈ +
C2

Mγ
+ H2

0

C3α
2

M2
= 0 (5.13)

(C2 and C3 are arbitrary constants). From the second equation (5.12) and the second equation (5.10), we obtain

β′β′′ = C3ξf, H2
0β′′ = C1fβ. (5.14)

Dividing the first equation (5.14) by the second, we find that

β′

H2
0

=
C3ξ

C1β
=⇒ β2 =

C3

C1
H2

0 ξ2 + C4 (5.15)

(C4 is an arbitrary constant). From the remaining relation (5.14), we have

f(ξ) =
H2

0β′′

C1β
=

C3C4H
4
0

(C3H2
0 ξ2 + C1C4)2

. (5.16)

By virtue of (5.3) and the above assumption of nonnegative function M , from expression (5.16) we obtain the
constraint C3C4 > 0. The first equation (5.12) serves to determine the unknown function S(ξ):

S(ξ) = f(ξ)−γ
(
S0 + C2

∫
ξf(ξ) dξ

)
.

Substitution of the expressions for S(ξ) and ρ = fM−1 into the equation of state p = Sργ yields the pressure

p =
1

Mγ

(
p0 − C2C4H

2
0

2(C3H2
0ξ2 + C1C4)

)
.

From (5.10) and (5.13), we determine the functions M and α dependent on t:

M̈ = − C2

Mγ
− H2

0

C3α
2

M2
, α̈ =

C1α

M
. (5.17)

System (5.17) is a closed system of ordinary differential equations for the functions M and α, which will be studied
below.

Let us determine the equations for the particle trajectories and magnetic lines.
The definition of the Lagrange coordinates ξ leads to the dependence x(t) along the particle trajectory:

x = x0M(t). (5.18)

In view of (2.2) and (5.5), the expression for the coordinate l(t) becomes

l(t) =

t∫

0

V (s, x(s, x0)) ds =

t∫

0

α̇(s)β(x0) ds = (α(t) − α(0))β(x0). (5.19)
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Finally, the particle trajectory in three-dimensional space is found from formulas (2.3). To construct the magnetic
lines at the time t = t0 for the given solution, it is necessary to calculate the integral

x∫

x0

N(t0, s)
H(t0, s)

ds =

x∫

x0

H0α(t)β′(sM−1)
H0M(t)

ds = α(t)(β(xM−1) − β(x0)). (5.20)

The magnetic lines are given by formulas (2.4). Thus, the functions M(t) and α(t) define the particle trajectory in
parametric form, and the function β(ξ) gives the magnetic line shape.

From Eq. (5.15) for the function β, it follows that there are two significantly different cases: C1C3 > 0 and
C1C3 < 0. In the case C1C3 > 0, Eq. (5.15) defines a family of hyperbolas in the plane (ξ, β). This implies that the
domain of existence of the solution has no limit along the Ox axis. In the case C1C3 < 0, Eq. (5.15) defines a family
of ellipses and, hence, the solution is determined only for |ξ| <

√
C1C4/(C3H2

0 ). The second case is physically
meaningless since on the boundaries of the domain of the solution, the density and pressure tends to infinity. Next
we assume that C1C3 > 0. In addition, the function β is defined and different from zero for all ξ if the inequality
C4 > 0 holds. Thus, the following conditions should be satisfied:

C1 > 0, C3 > 0, C4 > 0, p0 > C2H
2
0/(2C1). (5.21)

The sign of the constant C2 determines the dependence of the pressure p on the Lagrangian coordinate ξ. At infinity
ξ → ∞, the pressure depends only on time and is equal to p0M

−γ . For C2 < 0, the pressure at the coordinate
origin is lower than that at infinity, i.e., the solution describes the gas acceleration under the action of the internal
pressure. For C2 > 0, the pressure at the coordinate origin is lower than that at infinity, i.e., the motion of gas
occurs under the action of the elevated external pressure.

We return to system (5.17). Since stretching allows the function α to be determined to within an arbitrary
constant factor, it is possible to choose C3 = C1(2H2

0 )−1. Then, β2 = ξ2/2+C4. The magnetic lines are hyperbolas.
The dynamic system (5.17) becomes

M̈ = − C2

Mγ
− C1α

2

2M2
, α̈ =

C1α

M
. (5.22)

System (5.22) can be written in the form of the Lagrange equation with the Lagrangian

L =
Ṁ2 + α̇2

2
+

C2

(γ − 1)Mγ−1
+

C1α
2

2M
.

For this system, the energy integral holds:

Ṁ2 + α̇2

2
− C2

(γ − 1)Mγ−1
− C1α

2

2M
= b.

Denoting the derivatives as

Ṁ = r cos θ, α̇ = r sin θ,

from the energy integral, we obtain the expression

r =

√
2b +

C1α2

M
+

2C2

(γ − 1)Mγ−1
.

Then, system (5.22) is written as

rθ̇ =
C1α

M
cos θ +

( C2

Mγ
+

C1α
2

2M2

)
sin θ, Ṁ = r cos θ, α̇ = r sin θ. (5.23)

Further analysis of system (5.23) can be performed numerically. The results of the study are summarized in the
following theorem.

Theorem 2. The solution of Eqs. (1.5) with a linear dependence U(x) is given by the formulas

U =
Ṁ(t)
M(t)

x, V = α̇(t)β(ξ), N =
H0ξα(t)

2M(t)β(ξ)
, β =

√
ξ2

2
+ C4, ξ =

x

M(t)
,
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p =
1

M(t)γ

(
p0 − C2C4H

2
0

C1(ξ2 + 2C4)

)
, ρ =

2C4H
2
0

C1M(t)(ξ2 + 2C4)2
, ϕ = α(t)β(ξ)

with arbitrary constants Ci and p0 satisfying inequalities (5.21). The functions M and α are determined from the
ordinary differential equations (5.23). For this solution, the magnetic lines are hyperbolas and are given by formulas
(2.4) and (5.20). The particle trajectories are given by Eqs. (2.3), and the dependence l(t) is defined in (5.19).

For the main case h �= 0, the submodel with a linear dependence U(x) is studied similarly. Using the function
τ = 1/h instead of h, we write Eqs. (1.3) in the Lagrangian coordinates (5.1):

τ(Mρ)t + MρV = 0; (5.24)

xtt + ρ−1M−1(pξ + NNξ) = 0; (5.25)

ρMτVt − H0Nξ = 0; (5.26)

Mτpt + γp(τMt + MV ) = 0; (5.27)

τ(MN)t − H0Vξ + MNV = 0; (5.28)

τt = V, H0τξ = MNτ. (5.29)

Equations (5.24) and (5.27), together with the equation of state p = Sργ , lead to the first integrals of the system

τMρ = f(ξ), S = S(ξ). (5.30)

Equation (5.28) is a condition of compatibility of Eqs. (5.29) for the function τ . Relations (5.29) allow V and N to
be expressed in terms of τ :

V = τt, N = H0M
−1(ln |τ |)ξ. (5.31)

Substitution of (5.30) and (5.31) into (5.26) leads to the following equation for τ :

f(ξ)τtt = H2
0 (M−1(ln |τ |)ξ)ξ. (5.32)

Using the assumption of a linear dependence U(x), which in Lagrangian coordinates is equivalent to relations (5.7),
we search the function τ in the form

τ = α(t)β(ξ).

Relation (5.32) leads to

M(t)f(ξ)α̈(t)β(ξ) = H2
0 (ln |β(ξ)|)′′ (5.33)

(as above, dot above a symbol denotes differentiation of the corresponding function with respect to t, and prime
denotes differentiation with respect to ξ). Separating the variables in (5.33), we obtain

M(t)α̈(t) = C1, H2
0 (ln |β(ξ)|)′′ = C1f(ξ)β(ξ). (5.34)

By virtue of the above assumptions, Eq. (5.25) becomes

M̈(t)ξ +
α(t)β(ξ)

f(ξ)

( 1
Mγ(t)αγ(t)

(
S(ξ)

fγ(ξ)
βγ(ξ)

)′
+

H2
0 (ln |β(ξ)|)′(ln |β(ξ)|)′′

M2(t)

)
= 0. (5.35)

In Eq. (5.35), the variables are separated according to the Ovsyannikov lemma. The following case is nontrivial
(M �= const):

β

f

(
S

fγ

βγ

)′
= C3ξ,

β(ln |β|)′(ln |β|)′′
f

= C3ξ; (5.36)

M̈ +
C2

Mγαγ−1
+

H2
0C3α

M2
= 0. (5.37)

The second equations of (5.34) and (5.36) lead to

C1f(ξ)β(ξ)
H2

0

=
C3ξf(ξ)
β′(ξ)

=⇒ β2 = C−1
1 C3H

2
0ξ2 + C4. (5.38)
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As in the previous model, in order for the solution to be physically meaningful, it is necessary that the inequality
C1C3 > 0 be satisfied. The function f is given by

f(ξ) =
H2

0 (ln |β(ξ)|)′′
C1β(ξ)

.

Integration of the first equation of (5.36), in view of (5.38), yields

S(ξ)
fγ(ξ)
βγ(ξ)

=
C2C3H

4
0ξ2

2(C1C4 + C3H2
0ξ2)2

+ C5.

Then,

p = M−γα−γ
(
p0 +

C2C3H
4
0ξ2

2(C1C4 + C3H2
0ξ2)2

)
,

and the density is defined as

ρ =
f(ξ)

M(t)α(t)β(ξ)
= M−1α−1 C3H

4
0 (C1C4 − C3H

2
0ξ2)

(C3H2
0ξ2 + C1C4)3

. (5.39)

Finally, using Eqs. (5.34) and (5.37), for the functions M and α, we obtain

M̈ = − C2

Mγαγ−1
− H2

0C3α

M2
, α̈ =

C1

M
. (5.40)

For ξ2 = C1C4C
−1
3 H−2

0 , expression (5.39) for the density vanishes. In order that the expression for the
pressure also vanish for the given value of ξ, it is necessary that the following the condition be satisfied:

p0 = − C2H
2
0

8C1C4
.

In this case, the expression for the pressure becomes

p = − C2H
2
0 (C3H

2
0ξ2 − C1C4)2

8MγαγC1C4(C3H2
0ξ2 + C1C4)2

.

The signs of the constants included in the solution are chosen so that, for ξ = 0, the functions β and ρ, p are defined
and positive:

C4 > 0, C3 > 0, C1C2 < 0.

Using the previously obtained inequality C1C3 > 0, we have

C1 > 0, C2 < 0, C3 > 0, C4 > 0. (5.41)

If inequalities (5.41) are satisfied, the obtained solution describes the evolution of a plane ideal-plasma layer adjacent
to vacuum. We note that, in this solution, the particle trajectories and magnetic lines are also determined from
formulas (5.18)–(5.20). This study results in the following theorem.

Theorem 3. For system (1.3), the solution with a linear dependence U(t) is given by the formulas

U =
Ṁ(t)
M(t)

x, V = α̇(t)β(ξ), N =
C3H

3
0ξ

M(t)(C3H2
0ξ2 + C1C4)

,

p = − C2H
2
0 (C3H

2
0ξ2 − C1C4)2

8M(t)γα(t)γC1C4(C3H2
0ξ2 + C1C4)2

, ρ =
C3H

4
0 (C1C4 − C3H

2
0ξ2)

M(t)α(t)(C3H2
0ξ2 + C1C4)3

,

τ = α(t)β(ξ), β =
√

C−1
1 C3H2

0ξ2 + C4, ξ = xM(t)−1

with arbitrary constants Ci satisfying inequalities (5.41). The functions M and α are found by solving the ordinary
differential equations (5.40). The magnetic lines are hyperbolas are determined from formulas (2.4) and (5.20). The
particle trajectories are given by Eqs. (2.3), where the dependence l(t) is defined in (5.19).

6. Case of an Ideal Fluid (H ≡ 0 and ρ = 1). We examine only the case h �= 0 because for h = 0 the
solution is trivial. The invariant system (1.3) is simplified to
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τUx + V = 0, Ut + UUx + ρ−1px = 0,

Vt + UVx = 0, τt + (τU)x = 0.
(6.1)

The noninvariant function ω is given by the implicit equation

F (ξ, y − τ cosω, z − τ sinω) = 0,

where ξ is an arbitrary function which satisfies the equation ξt + Uξx = 0. Below, it is shown that Eqs. (6.1) can
be completely integrated in the Lagrangian coordinates (t, ξ). For convenience, we use the function τ1 = τ − tV ,
which, by virtue of (6.1), satisfies the equation D̃τ1 = 0. Thus, in the Lagrangian coordinates, system (6.1) has two
integrals, which are written as

V = V (ξ), τ1 = G(ξ)V (ξ)

(V and G are arbitrary functions). Using the function M = ∂x/∂ξ, we write the first equation (6.1) as

V (ξ)(t + G(ξ))M−1Mt + V (ξ) = 0.

Under the assumption that V (ξ) �= 0, this equation is integrated with an arbitrary function F :

M = F (ξ)/(t + G(ξ)). (6.2)

For the dependences x = x(t, ξ) and p = p(t, ξ), we obtain the system

xξ = F (ξ)(t + G(ξ))−1; (6.3)

pξ = xttF (ξ)(t + G(ξ))−1. (6.4)

Since the Lagrangian coordinate is chosen arbitrarily, it can be assumed that F (ξ) ≡ 1. Integration of Eq. (6.3) with
respect to ξ with the given function G yields the dependence x(t, x0) along the particle trajectory. Substitution of
this dependence into Eq. (6.4) and integration of the result gives the pressure p along the particle trajectories. We
note that the additive functions of time which arise from the integration of Eqs. (6.4) and (6.3) can be considered
zero by virtue of the infinite-dimensional group of transformations admitted by Eqs. (6.1), which is usual for the
ideal fluid equations.

The stationary solution of system (6.1) is given by the explicit formulas

U = U0 e−mV0x, V = V0, τ = (mU0)−1 emV0x, p = p0 − (1/2)ρ U2
0 e−2mV0x,

where U0, V0, m, p0, and ρ are arbitrary constants. The streamline pattern is given by the dependence l(x) in the
form

l(x) = (mU0)−1(emV0x − emV0x0). (6.5)

The exponential curves (6.5) attached to each point in the plane x = x0 according to the direction fields given by
the implicit equations (1.4) form the fluid flow pattern over the entire domain of the solution.

Conclusions. The properties of the submodel [1] of the equations of ideal magnetohydrodynamics that
describes a generalization of the classical one-dimensional plasma flow with plane waves were studied. In the
plasma flow defined by the submodel, the particle trajectories and magnetic lines were shown to be plane curves.
The trajectory of each particle and the magnetic line through this particle at each fixed time lie entirely in the same
plane parallel to the Ox axis. Unlike in the classical one-dimensional solution, in this solution, the plane of motion
of each particle has its own orientation given by a certain additional finite relation. The functional arbitrariness
available in the relation allows the geometry of the motion to be changed according to the problem solved. Exact
solutions of the submodel are found that specify motion with uniform deformation along the Ox axis.

This work was supported by the Russian Foundation of Basic Research (Grant No. 05-01-00080), Integration
Project of the Siberian Division of the Russian Academy of Sciences No. 2.15, and Council on Grants of the
President of the Russian Federation on the Support of Young Russian Scientists and Leading Scientific Schools
(Grant Nos. NSh-5245.2006.1 and MK-1521.2007.1).
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